Learning Bounds for Domain Adaptation
نویسندگان
چکیده
Empirical risk minimization offers well-known learning guarantees when training and test data come from the same domain. In the real world, though, we often wish to adapt a classifier from a source domain with a large amount of training data to different target domain with very little training data. In this work we give uniform convergence bounds for algorithms that minimize a convex combination of source and target empirical risk. The bounds explicitly model the inherent trade-off between training on a large but inaccurate source data set and a small but accurate target training set. Our theory also gives results when we have multiple source domains, each of which may have a different number of instances, and we exhibit cases in which minimizing a non-uniform combination of source risks can achieve much lower target error than standard empirical risk minimization.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملGeneralization Bounds for Representative Domain Adaptation
In this paper, we propose a novel framework to analyze the theoretical properties of thelearning process for a representative type of domain adaptation, which combines data frommultiple sources and one target (or briefly called representative domain adaptation). Inparticular, we use the integral probability metric to measure the difference between the dis-tributions of two d...
متن کاملDomain Adaptation: Learning Bounds and Algorithms
This paper addresses the general problem of domain adaptation which arises in a variety of applications where the distribution of the labeled sample available somewhat differs from that of the test data. Building on previous work by Ben-David et al. (2007), we introduce a novel distance between distributions, discrepancy distance, that is tailored to adaptation problems with arbitrary loss func...
متن کاملGeneralization Bounds Derived IPM-Based Regularization for Domain Adaptation
Domain adaptation has received much attention as a major form of transfer learning. One issue that should be considered in domain adaptation is the gap between source domain and target domain. In order to improve the generalization ability of domain adaption methods, we proposed a framework for domain adaptation combining source and target data, with a new regularizer which takes generalization...
متن کامل